riecovest.covariance_estimation.est_manifold_tylers_m_estimator
- riecovest.covariance_estimation.est_manifold_tylers_m_estimator(data_noisy_signal, data_noise, rank, start_value=None)
Signal and noise covariance estimation using the log-likelihood of an elliptical distribution.
This is the proposed method of [brunnstroemRobust2024].
- Parameters:
data_noisy_signal (ndarray of shape (ambient_dim, num_samples)) – Noisy signal samples.
data_noise (ndarray of shape (ambient_dim, num_samples)) – Noise samples.
rank (int) – Rank of the signal covariance matrix.
start_value (tuple of ndarrays, optional) – Initial value for the optimization. If None, the optimization starts from a random point.
- Returns:
Rx (ndarray of shape (ambient_dim, ambient_dim)) – Estimated signal covariance matrix.
Rv (ndarray of shape (ambient_dim, ambient_dim)) – Estimated noise covariance matrix.
References
[brunnstroemRobust2024] J. Brunnström, M. Moonen, and F. Elvander, “Robust signal and noise covariance matrix estimation using Riemannian optimization,” presented at the European Signal Processing Conference (EUSIPCO), Sep. 2024